Maison d'édition depuis 1857

NEWSLETTER

Histoires de spectres

Ce livre n'est plus disponible à la vente

Nalini Anantharaman

Dans sa leçon inaugurale, Anantharaman explique comment la notion de "spectre" en physique a rejoint celle de "valeur propre" en mathématiques dans les années 1920.
Chaire Géométrie spectrale

Dans les années 1920, une théorie mathématique (la diagonalisation des matrices) et une question physique (la détermination du spectre des atomes), nées indépendamment, se sont rejointes pour donner naissance à la mécanique quantique et à la branche des mathématiques appelée « théorie spectrale ». Celle-ci intervient dans toute équation d’évolution linéaire, dont elle décompose les solutions en une superposition de solutions stationnaires dites « modes propres », qui vibrent à des « fréquences propres » : ces fréquences constituent le « spectre ».
Située à l’intersection de plusieurs communautés mathématiques, la géométrie spectrale vise à comprendre le lien entre la géométrie initiale d’un objet et son spectre de vibration. L’auteure entreprend de retracer l’histoire de ce domaine très actif à travers quelques grands thèmes de recherche passés et actuels.
Nalini Anantharaman est mathématicienne, membre de l’Académie des sciences et lauréate du prix Henri Poincaré. Ses travaux visent à décrire géométriquement la propagation des ondes. Elle a été nommée en 2022 professeure au Collège de France, titulaire de la chaire Géométrie spectrale.